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DYNAMIC RESPONSE OF A RIGID PLASTIC

CLAMPED BEAM STRUCK BY A MASS AT ANY

POINT ON THE SPAN
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Abstract—Theoretical analyses are presented which examine the transverse shear and bending
response and the influence of finite deflections on the behaviour of rigid. perfectly plastic clamped
beams struck transversely by a mass at any point on the span. It transpires that the transverse shear
force may dominate the entire responsc when the impact point is close to the support. However,
the membrane force also plays an important role when the transverse deformation is larger than
the beam thickness. approximately.
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NOTATION

width of beam

defined by cgn (18)

mass of striker

thickness of beam

bending moment

fully plastic bending moment of cross-section
membrane force

fully plastic membrane force of cross-section
shear foree

shear forees at the right- and left-hand side of section adjacent to the impact point, respectively
time

mitial impact velocity

transverse displacement of beam

Wil,

transverse displacement at the impact point

displacement at the impact point when the travelling plastic hinge on the right-hand side reaches
the right-hand support

displacement at the impact point when the travelling plastic hinge on the left-hand side reaches
the left-hand support

transverse displacements at the right- and left-hand side of beam adjacent to the impact point,
respectively

shear sliding displacements at the right- and left-hand side of the impact point, respectively
maximum permanent deformation

location of the truvelling plastic hinges on the right- and left-hand sides of a beam, respectively
defined by eqn (20b)

mi, /G

mass per unit length of beam

IQ{QO- Q10/Qo Q:20/C

1782
M,TIGV,l,
times when right- and lefi-hand travelling hinges reach the right- and left-hand supports,
respectively
time when shear sliding ceases
times when shear sliding ceases at right- or left-hand side of the impact point (¢, < £;3)
time when displacement of beam ceases
GViM,
axial coordinate

static yield stress

Qolnlr?-l"o- Qolz/z-"n

half span of beam

lengths of parts of beam defined in Fig. 2(a) (/, < 1))
é()/oe.

t On leave from Huazhong University of Science and Technology, Wuhan, China.
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Fig. 1. Plastic yield conditions.

1. INTRODUCTION

It has been demonstrated in previous work that the transverse shear force may exercise a
more important influcnce on the response of dynamically loaded rigid, perfectly plastic
structures than in the corresponding static loading cases[l]. The initial transverse shear
forces according to classical (bending only) theories are infinitely large at the boundaries
of loaded zones in rigid, perfectly plastic beams, plates and shells subjected to an impulsive
toading[2-5] or struck by a muss[6-8]. By way of contrast, the transverse shear forces in a
statically loaded structure are finite in order to satisfy the transverse equilibrium conditions.
Indeed beams, for example, may fail due to excessive transverse shear force at the supports
when subjected to impulsive velocities[9] or at the impact point when struck by a mass[10].
Transverse shear effects play an important role in a structure which responds with higher
modal deformation forms[l1] and dominate the bchaviour of ideal fibre-reinforced
beams(12] and plates[13].

When a rigid, perfectly plastic bcam with axial restraints at its supports is subjected to
a large dynamic load, a significant discrepancy is observed between experimental results
and a theoretical analysis which ignores the influence of finite deflections[7, 10, 14]. In this
case, the membrane force plays an important role in the beam behaviour. A fully clamped
beam may enter a string state when the maximum transverse deformation is larger than the
beam thickness, approximately(7, 14, 15]. Symonds and Mentel[15] and other authors[10,
14, 16] assume that the membrane force N is constant throughout a beam which is suggested
by the in-plane equilibrium equations when axial inertia is ncglected. In order to simplify
theoretical analyses. some authors[10, 14-16] have employed the approximate square yield
curve in Fig. 1(a) instead of the more exact parabolic yield curve which is also shown in
Fig. [(a). It transpires that theoretical solutions using approximate square yield curves
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()]
Fig. 2. Clamped beam struck transversely by a mass G.

appear to bound those relating to the parabolic yield curve and also give good agreement
with the corresponding experimental results[10, 14, 16].

The dynamic response of a rigid, perfectly plastic clamped beam due to an impact
loading has been examined by several authors[6, 7, 17]. The extension of this work to
examine the shear and bending response and the influence of finite deflections on a clamped
beam struck transversely by a mass at any point of its span, as shown in Fig. 2, is presented
in Sections 2 and 3 of this paper for some particular cascs which correspond to the
experimental tests conducted recently in the Department of Mechanical Engineering at the
University of Liverpool.t

The beam has a length [, +/, = 2/ and mass m per unit length and is struck at a point
{, from the right-hand support by a mass G travelling with an initial velocity V¥, as shown
in Fig. 2. After impact, the striker G is assumed to remain in contact with the beam.
Therefore, the striker and the struck point of the beam have an initial velocity V, at the
instant of contact and a common velocity throughout the entire response. Without loss of
gencrality, the dimension /, can be taken smyller than /,.

2. SHEAR AND BENDING RESPONSE OF A RIGID, PERFECTLY PLASTIC CLAMPED BEAM
STRUCK TRANSVERSELY BY A MASS AT ANY POINT IN {TS SPAN

The plastic yiclding of a beam is controlled by the square yield curve relating the
transverse shear force and bending moment as shown in Fig. {(b) [8, 17]. It is evident from
Refs [7, 8, 17] that the transverse velocity profile of a beam may change with the magnitude
vy = Qo \/2My0or vy = Q,ul2/2M, when the finite shear strength of a material is considered.
The membrane force is neglected in this section, i.e. N = 0.

2.1. Basic equations

It is assumed that a stationary plastic bending hinge develops at the impact point x = 0
with two travelling bending hinges at x = a, and —a, which move towards the supports
when a beam is struck by a mass G. The two parts of a beam between the stationary plastic
hinge and the travelling hinges rotate as rigid bodies about the travelling hinges while the
rest of a beam beyond the travelling hinges remains undeformed. This velocity profile is
shown in Fig. 3(a) and may be written

0, —l/r€z< -z7
Wi(1+z/z), —z23 €:<0°
W(z) = { W, ==0 (la-€)
H;/l(l—:/:l). 0" <:-<:7
0, g5

t The experimental results will be reported in a subscquent paper.
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Fig. 3. Motion of 4 beam with two travelling plastic bending hinges, one stationary plastic bending
hinge and (wo transverse shear slides.

where
:=.Y//|., :|=a'/l|, :3=u3//,, r=[|/[2 2il_d)
W=wWil,, ()=20a()et, t=MTIGV,, (2e-g)

W, is the dimensionless velocity at the impact point and W, and W, are the dimensionless
velocities on the right- and left-hand sides adjacent to the impact point, respectively, i.c.
W=W,atz=0"and W= W,atz=0",

The transverse and moment equilibrium equations for the regions 0 < = <z and
—z§ €z <07 in Fig. 3(b) together with the transverse equilibrium equation at the impact
point are

WAL = — 1201 +qi0v120)/97 (3a)
AW+ W2 = —8uvigioly (30)
2 Wt Wa20/2 = —12u(1 —g20v,21)/95, (3¢)
2o+ Wazy = 8uviga0ly (3d)
and
—Gio+ g = — l'f/n/‘tuv, (3¢)

since the transverse shear force is zero at the plastic bending hinges and where
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Fig. 4. First phase of motion for shear and bending response with 3 < v, < v, (Case I).

vi=Qul\2My, u=GV}2M,, g=ml /G and ¢ = Q/Q,. (4a-d)

22. Case L3 <v, v,
2.2.1. Phuse 1,0 < ¢ < t,. [tis evident from Refs [7, 8, 17] that alter impact, transverse
shear sliding occurs on both sides of the impact point (z = 0* and 0 ") where the dimen-

sionless shear forces ¢, = —¢y9 = — 1. A stationary plastic bending hinge is formed
at =0 while two stationary plastic bending hinges develop at - =z, <!l and
= —z;> —l/rwhen 3 < v, < v,. The associated transverse velocity profile is shown in

Fig. 4 and is described by eqns (1).
Equations (3) with ¢p = —¢;0= —1and 2, = Z; = 0 give

AW, = —12u(l —v,2))/g (Sa)
2 W, =8u, /g (5b)
2W, = —12u(l —v,25)/g (5¢)
W, = 8uv,Jy (5d)
and
Wy = —8uv,. (5¢)

Now, solving eqns (5), we obtain z, = z,, Wz = W,, W, =W,
z, = 3/vy, H;/. = 8viut/3g, H;/(, = 2u—8uv ! (6a—)
W, = 4viut’/3g, W, = 2ut—3duv,t* (6d,e)
when satisfying the initial conditions W, = Wy=0, W, = W,=0, Wy =2uand W, =0

atr=0.
Transverse shear sliding ccases when W, = W, = W, which occurs at

t, = 3g/{4v,(v, +39)}. N
It may be shown that the transverse deformations in the beam at time ¢, arc
Wo(t,) = 3ug(v, +3¢/2)/{2v (v, +39)°} (8a)

W\(1,) = Wa(t) = 3ug/{4(v, +39)%} (8b)

and
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Fig. 5. Second phase of motion for shear and bending response in Case [ (N = 0 along the beam),
or first phase of motion for dynamic response with the influence of finite deflections (N = N, and
v, 2 v, — o).

W\, =W, =W,(,)-W, () = 3ug/{4v,(vi +39)} (8¢c)

where W, and W,, arc the transverse shear sliding accumulated during this phase on the
right- and left-hand side of the impact point, respectively. | .

2.2.2. Phase 2, t, < t < t,. It is observed that W, = W, = W, and z, = z, at the end
of phase 1. It is now assumed that | and z, are a function of time ¢ during this phase which
leads to the transverse velocity profile shown in Fig. 5. .

Equations (3) with 2, = 22, ¢,g = —qssand W, = W, = W, give

(W\23) = 24uly (9a)
and
(1429 W) = 2u (9)
when using =, = 3/v, and HL/, = 2uv/(v,+3g) at t = ¢,.
Equations (9) can be rewritten
W, (1 =4 W?) —24ug = 0 (10a)
and
gzij(l+z.9) = 12¢ (10b)
When =, = 1, eqns (10b) and (9b) give

t = g/{12(1 +9)} (11a)
and
W, () = 2uj(1 +9). (11b)

Integrating eqn (10a) after multiplying by W,, we obtain
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Fig. 6. Third phase of motion for shear and bending response in Case [, or second phase of motion
with the influence of finite deflections.

V22 —4u® In (W) —24ugW, = A (12a)
where
A= WHe)/2—4u? In [W,(t,)] - 24ugW (1)
or
A =2} (v, =39)/ (v, +3¢g) —4u® In [2uv,/(v, +39)]. (12b)

Substituting eqn (11b) into eqns (12) gives

W) = Wa) = u{l/(1+9)* = (vi = 39)/(vi +39) =2 In [(v, +3¢)/(vi +v.9)]}/129.
(13)
2.2.3. Phase 3, t, < t £ t,. The right-hand travelling plastic hinge reaches the right-
hand support_at ¢ = ¢, where it remains throughout this phase of motion. Thus, z, = 1,
2, =0 and W,= W, = W, and the associated transverse velocity profile is shown in
Fig. 6. . . .
Equations (3a) and (3¢)-(3e) withz, = 1, 3, = 0 and W, = W, = W, predict
g(W,23)/12u =2 (14a)
and
9 WY j4u = —(3+g) W, [6u—2 (14b)

which, when integrated become

gW 23 12u = 2(t—t,)+ B (15a)
and
(3gz2+6+29) W /12u = =2(t—1,)+C (15b)

respectively, where

B=gW, (t)23¢)/12u and  C = [gz2(t,)/du+1/2u+g/6u) W,(1,). (15¢c,d)
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Fig. 7. Final phase of motion for shear and bending response in Case 1. or final phase of motion
with the influence of finite deflections.

Equations (15) predict that

W, = 12u(B+C)/D (16)
while eqns (14a) and (16) give
2y =2D%[gz,(3gz1+ 12+ 4g) (B+C)) 1))
where
D =gz3+3g:,+6+2g. (18)

Now, W, = #,0W/0z,, which using eqns (16) and (17), becomes
OW [0z, = 6ug=,(39=,+12+49) (B+C)*/D°. (19)
It may be shown when integrating eqn (19) that

W, = 0.5ug(B+ C)*{(36z:+ 54)/[D(g ~24)] — (182, + 12+ 36/g)/D*

+Y )92, + Wi()  (20a)

where

24 29z, + 39 ]
— tan | —2° : f 2
\Aga4—g»am“"[¢wa4-w> org=

12 m[wa+w—wa—M»
J(9(g—29))  L2922+39+/(9(9-24))

f(zl) = (20b)

:I forg > 24

and B, C and D are defined by eqns (15¢). (15d) and (18), respectively.

2.2.4. Phuse 4, t, < t < ;. The left-hand side travelling plastic hinge at z = — =, reaches
the left-hand support at ¢ = 1, after which the two parts of the beam rotate as rigid bodies
until all the initial kinetic energy has been dissipated as plastic work. The transverse velocity
profile during this final phase of motion is shown in Fig. 7.
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Fig. 8. First phase of motion for shear and bending response with | < v, € 3and v, > 3 (Case II).

Equations (3a), (3¢).and (3e) withz, = 1,2, =0,z = l/r, 2, =0and W,, = W, = HL/Z
give

[(V+1g/3+r W, = —dur(1+r) @n
which may be integrated to predict

W, = —dur(l+r) (1= t)/[r + (L +1g/3] + W (1,) (22a)
and

Wy = =2ur(l+0) (1= 1) [Ir+ (L +0gBl+ W (1) (1= 1)+ W\ (6).  (22b)
Motion ceases at { = f; when W=0 and, therefore
te= W\ (02) Ir+ (L4 g3) [4ur(L+ ) + 1, (23a)
with an associated permanent transverse deformation of the beam
Wi=I[r+(1+ng/3) H;’%(lz)/[éiur(l +n)]+ W, (12) (23b)

where W,(t,) and W (1) are the respective velocity and deformation at the right-hand side
of the impact point when ¢ = 1,
The maximum permanent transverse deformation at the impact point is

W= Wi+ W, (23c)

where W\, is given by eqn (8¢c) and is the shear sliding deformation at the right-hand side
of the impact point.

23.Casell,l <v, <3 and3 < v,

Equation (6a) shows that if v{ < 3 then =, > | and the velocity profile in Fig. 4 is no
longer valid. Therefore, it is assumed that a stationary plastic hinge occurs at the right-
hand support for beams having v, < 3 as shown in Fig. 8.

2.3.1. Phase 1, 0 <t < t,,. After impact, the mechanics of motion are the same as
those in Section 2.2.1 except the right-hand plastic bending hinge now remains at the right-
hand support where z = 1 as shown in Fig. 8.

Equations (3a) and (3c)-(3¢) withz;, =1,2,=0,q,0= —1,¢3 =1 and Z, = 0 give
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Fig. 9. Case llwith LS g v, <3fors, <t <y,

v 0

2 =3v. Wy =2u—8vut. W, =12u(v, - )tg (24a—)
Wz = 8“"%‘/3g\ Wﬂ = 7&!—4&(&’;!2, W; = “6“(1 —V;)fzf’g (24d—f}
and

W, =4duvit*/3g (24g)

since Wy =2u, W, =W,=0and Wy= W, = W,=0at ¢t =0. It is evident from eqns
(24c) and (24d) that W, > W, when 3/2 < v, < 3. Therefore, the shear sliding on the right-
hand side of the impact point first stops if 3/2 € v, < 3, while the left-hand side ceases at
an carlier time when 1 < v, < 3/2. Equations (24) for 3/2 < v, < 3, give W, = W, at

ty =g/{dv,g—6{(1—v\)} and W, =ug/{dv,g—6(1—v,))} (25a,b)
while for 1 < v, < 3/2, Wy = W,at
ty =3g/{dv (v, +3¢9)} and W, =3ug/{dv,(v,+39)}. (26a,b)

2.3.2. Phase 2, t,, <! < t,,. It was found in the previous section for 3/2 < v, < 3 that
shear sliding stops at = = 0* when ¢ = ¢,,, while the other transverse shear slide at z = 0~
continues and gives the velocity profile shown in Fig. 9. Equations (3a) and (3¢)-(3e) with
Wo= W, qu=12 =123 =0and:, =0give

.

W, = —12u(l+v ) /3 +g) +6u/B+g), W, =8witdg, z,=3/v, (QTa<)
w,

—6u(l1+v,)0*/(3+g) +6ut/(3+¢) —3ug/ {23 +g) 2vig—3+3v,)} (27d)

W, = 4uvit’/3g (27e)
and
W, =W, at 1, =9/(12v} +4vig+ 18g+18v,g). (27)

. The subsequent motion is the same as phases 3 and 4 in Case 1 with ¢, z;(¢,) and
W (t,) replaced by t,,, 3/v, and W,(L,4), respectively.
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Fig. 10. Case [l with | < v, < l.5fort,, <1< ¢,

For 1 < v, < 3/2, shear sliding ceases at = = 0~ when ¢ = «,,, while shearing continues at
z = 0* as shown in Fig. 10. Equations (3a) and (3c)-(3¢) with Wy = Wy, q0= — 1,2, = |
and 2, = 0 give

W, = 12u(v, — )tjg. W, = 6u(v, —1)i}]g (28a,b)
gWzi12u=2t and (2+gz1) Wa/8uv, = 1)2v, —t (28¢c, d)

which may be rearranged in the form

W, = 12u/(v,g23 +6+3¢23) (29a)
or
Wz = 2u+3ugt—4uv, t—u,/(3gt(3gt —8v,1+4)) (29b)
and
t =g23/(@2v,gz3 + 12+ 69z,). (29¢)

Now, integrating eqn (29b) with respect to time ¢, we obtain

Wy = [2ut+3ugt® 2= 2v,ut® — Qat+b)/ (t(at + b)) [4a+ f(D]I., + W1 (1,1)

(30a)
where
a=gu*(9g—24v,), b= 12gu’ (30b,¢)
and
b*(8a/a)~" In [2at+b+2,/(at(at+b))] fora>0
S = {b’(Sa\/ - . (30d)
- arcsin [—(2at+ b)/b} fora<O.
Equations (28a) and (28c) predict that
L=JQvi=1) Bh

when W. = Wz. Therefore, two types of motion are possible depending on the magnitude
of 5
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IfZ, < lryorr’ < (v,—1)/2, then z:(4,5) = 5, = \/(2/(v,~1)) and Wl = W: at
f = {3\/(2("! —1))+6(v; —D/g+2v,]7". (32)

. The subsequent motion is the same as phases 3 and 4 in Case I but with ¢,, z;(¢,) and
W\ (t,) replaced by .. z:(t,2) and W' (4,,). respectively.
If 2.2 1/r. or r* = (v,—1)/2, then the left-hand travelling plastic hinge reaches the
left-hand support before shear sliding ceases at = = 0. Therefore. eqns (28)~(30) are valid
until . = l/rat

F, = g/(6gr+12r* +2v,9). 33)

The motion of a beam is now governed by eqns (3a). (3¢c) and (3¢) with g,y = ~1,z, = I,
5 =0.2;= ljr, 2, = 0and W, = W, which give

W, = 12u(v, = Dilg. W, = 6u[l/r—=2(1+v)Ar}/(g+3r) (34a.b)

W, = 6u(v,—1)t*g (34¢c)
and

Wy = 6ur(t—1,) [1 = (r+v,) (1+ 1))/ (g+30) + W,y (1) (34d)

where W;(Iz_) is ob_mincd by substituting eqn (33) into eqn (30a).
Now, W, = W, and shear sliding ccases at = = 0* when

tx = 0.5rg/[(vi = 1) (g+3r) +gr (1 +v2)]. (35

The subscquent motion is the same as phase 4 of Case I but with Ifi’; (t2) and W (¢,) replaced
by W,(z,2) and W,(1,;). respectively.
The final shear deformations for this case are

W, = W, (1) + W, —Wit,) iM32<v, €3 (36a)
where W, and 1,, are defined by egns (25b) and (27f), respectively, and
Li/l‘ = ”-/2 (152) + ;i/z, — ;.Vl (’,2) lf I < V| < 3/2 (36b)

where W, and ¢,, are defined by eqns (26b) and (32) or (35), respectively.

24 Case L, O < v, S tand3 < vy, .

Equation (24c) indicates that W, < 0 and W, < O when v, < 1. This is not permissible
because ¢, < ¢y = — | and yield violations of the shear force would occur in 0% € z < 1,if
I, < 0. The theoretical analysis in this section uses the velocity profile shown in Fig. 11
with the entire beam on the right-hand side of the impact point remaining stationary
throughout the response. .

24.1, Phase 1,0 < 1 < t,;. Equations (3) with W, = 0 and g, = — ! reduce to

(W,21) = 24u/g (37a)
G20 = g(W12:)/8uv, (37b)

and
Gro+ 1 = — Wo/duv,. (37c)

Transverse shear slides develop at - = 0~ and 0* after impact as shown in Fig. 11 and,
therefore, eqns (37) with g5, = | become

li’n = 2u—8uv, 1, lfi/'z = 8uvit/3g, =z, =3/v, (38a—<)
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Fig. 11. First phase of motion for shear and bending response with0 < v, < | and v, > 3 (Case [II).

Wy =2ut—4uv,t* and W, =4duvit’/3g (38d,¢)

since Fi{(, =2u, Wy=0, Wy=0and W, = 0 when ¢ = 0. Equations (38a) and (38b) give
W}, = "v: a(

ty =3g/{4v, (v, +39)} and W, = 3ug/{4v,(v, +39)}. (39a,b)

2.4.2. Phase 2, t,, < t < t,. The shear sliding ceases at z =0~ when ¢ = ¢,; and the
subscquent motion in Fig. 12 is still governed by eqns (37) with W, = W,. Thus, eqns
(28¢)-(30) with ¢, given by eqn (39a) are valid for this case until

t; = g/(6gr+12rt +2v,q) (40)

which is obtained from eqn (29¢) with z, = 1/r when the travelling plastic hinge reaches
the left-hand support.

¢

w B .oz
: - aIs
1/r \
"w" /]
"
a Pl

of | - |

Fig. 12. Case lll when ¢, < 1 < 1,.
SA3 24:)-C
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Fig. 13. Case Il when ¢, <1 < 4.

2.4.3. Phase 3, t, < t £ t. The travelling plastic hinge at - = — =, reaches the left-hand
support at ¢ = ¢, which is defined by eqn (40). The shear sliding at = = 0* remains active
during subsequent motion as shown in Fig. 13,

Equations (3¢) and (3¢) with W', =0, W, = W, ¢,y = — 1.z, = l/rand 2, = 0 give

W= — u(r+v)r(t— 1)/ (g +3r) + 1W.(1,) (41a)
and
Wy = —6u(r+v)r(t — 1) /(g +3r) + W1 (12) (1= 1) + Wy (1) (41b)
where
Wo(t2) = 12ur?/(v,g +6r% + 3gr) (@1¢)

is obtained from eqn (29a) with z, = 1/r and W,(1,) is found from eqns (30) with ¢, and
1, given by eqns (39a) and (40), respectively. .
The response duration is calculated from eqn (41a) with W, =0, or

1= 0.5/(r+v,). (42a)

The associated maximum permanent transverse deformation is

Wy = (g+3n W)/ 28utr+ v, )b+ Wa(12) (42b)
while the shear sliding at - = 0™ when motion ceases is
Wi, = Wi+ W, (43)

where H'y, is defined by egn (39b).

3. FINITE DEFLECTION BEHAVIOUR OF A RIGID PLASTIC CLAMPED BEAM STRUCK
TRANSVERSELY BY A MASS AT ANY POINT ON THE SPAN

It is suggested by previous theoretical analyses and experimental evidence[6, 18] that
three phases of motion arc necessary to describe the behaviour of a clamped beam struck
by a mass as shown in Fig. 2(a). A stationary plastic hinge develops at the impact point
z = 0 during the first phase, while two travelling plastic hinges originate from the impact
point and travel towards the supports. The two parts of the beam between the stationary
and travelling plastic hinges rotate as rigid bodies about the travelling hinges, while the
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remainder of the beam remains undeformed. The second phase of motion commences at
t = t, when the right-hand travelling hinge reaches the right-hand support and finishes at
t = t, when the left-hand travelling hinge reaches the left-hand support. The plastic bending
hinges remain stationary at the impact point and both supports during the final phase of
motion.

In order to simplify theoretical analyses, which retain finite deflection effects, it is
usually assumed that the membrane force V is constant throughout the span of a beam. It
is well known, e.g. Refs [14-16], that the fully plastic membrane (string) state is reached
when the maximum transverse displacement equals the thickness of a perfectly plastic fully
clamped beam. Thus, if interest is confined to large plastic deformations, then it is reasonable
to let N = N, throughout the response and use the square yield condition in Fig. 1(a). It
was shown in Refs [9, 19] that transverse shear forces may exercise an important influence
during the early phase of motion when the displacements are small but are less important
for large displacements and are, therefore, not retained in the yield condition in this section.

3.1. First phase. 0 < {
The transverse velocnty profile shown in Fig. S may be expressed in the form

0. —l/r€:-< -3
Wo(l4z/z)), —:23 €£:<0°
W= <{ W, =0 (44)
Wo(l—z/z)., 0" <:-<zy
0, €kl
where 2, = z, during this phase of motion.
The transverse and moment equilibrium cquattons for the beam are
o ”'i/u + Wofx = - ﬁ/o/!l (45a)
and
gTIWy 9205 W2+ 32 Wo/2 = —12u(1 + 23, (45b)
since
G0 = —q20 = WolBuv, (45¢)
where
7 = Ny \/AM .
Equations (45a) and (45b) can be rewritten in the form
(Wozd) = 24u(1 +29WW,) /g (46a)
and
(1 +g2) W, = 2u (46b)
because z; = 0 and Wo = 2u when ¢t = 0. Equations (46) give
Wo— a1 Wo W3 —24ug — 48ugy W = 0 47
which integrating, after multiplying by li’(,. predicts
W32 —4u® In Wy — 24ug Wy —24ugy Wi = 2u* —4u® In (2u) (48)

since Wy =0att=0.
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The right-hand travelling plastic hinge reaches the right-hand support when 1 = 1, and
the associated dimensionless transverse velocity is

W(n = 2ul/(1+g) (492)

according to eqn (46b), which substituting into eqn (48) gives the corresponding dimen-
sionless transverse displacement

Wo = {—1+ [l —wy[gQ+g)/(1 +9)° =2 In (1 +9)]/3g]}/27. (49b)

3.2. Second phase. t, < t £ t;

The right-hand plastic hinge remains at the right-hand support during this phase of
motion, while the left-hand plastic hinge continues to travel towards the left-hand support
as shown in Fig. 6, or

0, ~lfrgc€ —z3

i = ) Wol 43/, =23 <2507 (50
W. =0
Wo(l—2). 0" <<t

The transverse and moment equilibrium equations together with the transverse equi-
librium cquation at the impact point = = 0 give

(Wy23) = 24u(1 + 29 Wy)jg (5ta)
and
(22 = =2W,(3+9)/39~8u(l +23W,)ly (51b)
which may be arranged in the form
3 W) + (W2 +2W,(3+9)lg = 0. (52)
Integrating eqn (52) with respect to time ¢, we obtain
Wy = 12u/D (53a)

sincez, =2, =latr=1, H;/'(,, is given by eqn (49a) at 1 = 1, and where D is defined by
eqn (18). Equation (52) may also be written as

Wy = —(3422)gWoi/D. (53b)

Now, substituting eqn (53b) into cqn (51a) predicts the velocity of the travelling plastic
hinge

3y = 28u(1 + 29 W) D] { gz Wo(3gz2 + 12 +44)} (53¢)

which with eqn (53a) gives
WY /fzy = 6ugz1(3gz, +12+4g)/ (1 + 2y W) D’} (54)

since W, = 2,8W,y/¢z,. Finally, the dimensionless transverse displacement during this phase
of motion is obtained by integrating eqn (54), or
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Vo+yW3 = 0.5ug{(362,+54)/[(9 —24) D] — (18, + 12+ 36/9)/ D"
+3 )92}, + Wo +7W5  (55)

where z:(t,) = 1, f(z>) is defined by eqn (20b) and W, is the displacement at the impact
point when 1 = ¢, according to eqn (49b).

3.3. Final phase, t, < t < &

The left-hand travelling plastic hinge (at - = —z;) reaches the left-hand support at
t = t,. The two parts of the beam then rotate as rigid bodies during this phase of motion
until all of the initial kinetic energy is dissipated as plastic work. The associated transverse
velocity profile is shown in Fig. 7, or

. (We(l+zr). —1/r<:z<0
= - (56)

li"o(l -2). 0<:

[t may be shown that the transverse and moment equilibrium equations of a beam
reduce to the expression

[g(F +r)/3+ ] Wo+du(l +r)r(1 + 27 W) = 0 (57)

which, integrating after multiplying by H;/.,. we obtain

0.5[g(1 +7)/3+ W2 +du(l +P)r(Wo +yW3) = E (58a)
where
E = 0.5[g(1 +7)/3+ Wi +4u() +1)r(Wy, +7W 1) (58b)

and Wy, and W, are the respective transverse velocity and displacement at the impact
point when =, = 1/r at the end of the second phase of motion (¢ = ¢5,).

The motion of the beam ceases when W, = 0 and, therefore, the maximum permanent
transverse deformation at the impact point is

Wi+ yW¢ = Elf[du(l +r)r]
or

W= {=1+ 1+ Ey/[u(l +r)r]]}27. (59)

4. DISCUSSION

The theoretical analyses presented herein on the behaviour of clamped beams struck
transversely by a mass G at any point of the span is part of a larger study. Some particular
cases which correspond to the parameters which describe the experimental tests conducted
in the Department of Mechanical Engincering at the University of Liverpool are presented
in this paper. The experimental test results and comparisons with theoretical predictions
are presented in Ref. [20].

It can be shown that the theoretical analyses in Sections 2 and 3 satisfy both the
kinematic and static admissibility conditions, provided ¢ < 3r%/v,, approximately, which
embraces all the experimental test results. Otherwise, it is necessary to develop theoretical
solutions with alternative transverse velocity profiles. The maximum dimensionless per-
manent transverse deformation and transverse shear sliding deformation for some clamped
beams with rectangular cross-sections are plotted in Figs 14 and 15, where Qo = BHo /2,
My, = BH?0,/4, No= BHa, and v, =y = [,/H. It is evident that the dimensionless
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Fig. 14. Variation of Wy with u when r = | (mass strikes at the midspan) and /,/H = 10 for beams
with rectangular cross-sections: g =10"; -~ ¢g=10"* @, Bending only thecoretical
solution ; ©. shear and bending theoretical solution ; @, theoretical solution with influence of finite
deflections for the square yield condition in Fig. 1(a) which circumscribes the exact yield condition ;
®. sime as ® except for an inscribing square yield condition which is 0.618 times as large: @,
theoretical solution of Nonaka[7] which uses the exact yicld curve in Fig. 1(a).

Fig. 1S. Variation of W/f with v when r = 0.1. Notation is defined in the caption to Fig. 14.
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maximum permanent deformation increases with the decrease of the mass ratio g, but the
difference is small when g changes from 107° to 10~ '. The theoretical predictions for the
dimensionless maximum permanent transverse displacements according to the bending only
and shear and bending analyses are fairly similar in Figs 14 and 15. However, the transverse
shear effect dominates the response of a beam when the impact point is close to a support
since the maximum shear sliding deformation equals the total maximum permanent defor-
mation when v, < 1. The lines associated with the shear and bending analyses (®) in Figs
14 and 15 are terminated when the maximum shear sliding equals the beam thickness[9].

The influence of the membrane force in a theoretical solution becomes increasingly
important with larger external dynamic energies. Therefore, the bending only and shear
and bending theoretical solutions are only valid for beams with axial restraints when the
transverse deformations remain small.

The theoretical predictions in Section 3, obtained using the approximate square yield
curve in Fig. 1(a), do bound those in Fig. 14 with a parabolic yield curve when the impact
point is at the centre of the beam[7]. However, the theoretical analysis with the parabolic
yield curve has not been developed when the impact point is at any position on a beam.

The theoretical analysis in Section 3 indicates that when the mass ratio g is small
(gir* « 1) the deformation of the beam during the phases with moving plastic hinges is
very small. It transpires that almost all of the external dynamic energy is absorbed during
the final phase of motion in which two parts of the beam rotate as rigid bodies about
the supports. In this circumstance, the dimensionless maximum permanent transverse
deformation can be expressed approximately as

We == 14+ +2y/(1+0]}/27 (60)

which gives good agreement with the complete solution in Section 3, even wheng = 0.1,

The various cases discussed in Section 2 are valid for different ranges of v, which are
obtained from the associated static admissibility conditions. It can be shown that when
v, < | the bcam on the right-hand side of the impact point cannot rotate because
—M,< M < M,for z> 0" and this behaviour is classified as Casc [T1. When v, > 1, the
theoretical analysis for Case I is no longer valid since {M| > M, at the clumped end.
Therefore, a plastic hinge develops at the clamped end and the right-hand side of the beam
rotates about the support. This behaviour is classified as Case I1. It turns out that the
theoretical analysis for Case Il is not valid when v, > 3 since [M| > Myoccursatz =z, < 1.
Thus, to overcome the difliculty when v, > 3, Case [ is defined with a plastic bending hinge
at = = z, and the beam in the region 7| < = < | remains stationary because the shear force
is zero at the location of the bending hinge at = = =,

The foregoing discussion shows that the transverse velocity profiles during the shear
sliding phases depend only on the parameter v, or the length [, when Q, and M, are given.
Similar deformation profiles can be obtained for the left-hand side of the beam with a
different range of v,, or a ditferent length of /5, which is assumed to be larger than /| in this
paper without any loss in generality.

A complete theoretical solution which is valid for all values of the parameters including
vy < 3and g > 3r3/v, will be presented in another paper.

5. CONCLUSIONS

The transverse shear and bending response and finite deflection behaviour of clamped
beams struck transversely by a mass at any point of the span are examined in Sections
2 and 3, respectively. The transverse shear sliding and maximum permanent transverse
deformations of a beam with, or without, axial restraints, can be obtained analytically.
When the mass ratio g is small (i.e. large striking mass), the maximum permanent transverse
deformation may be obtained from eqn (60).
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Transverse shear forces may dominate the response when the impact point is close to a
support, while membrane forces, or finite deflections, are important for maximum transverse
deflections larger than the beam thickness, approximately.
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